кто чем сможет, хотя бы пару заданий

Помогите кто чем сможет, хотя бы пару заданий 🙂

  • А4-2 тут у нас применяется основное тригонометрическое тождество (sin^2x+cos^2x=1) следовательно в нашем случае 3cos^2x+3sin^2x=1 и получаем 1-6 а это равно -5 значит ответ номер 2

     

    А6-3 Т.к. смотри 0,04=0,2 в квадрате а в свою очередь 0,2=1/5 а т.к. основания равны то степени между собой тоже равны а значит  3х-7>2   и решаем это х>3 а значит (3;+бесконечность) вот и находим ответ под номером 3! но главное степени мы можем приравнять только если ты сделаешь основания равными!!!! т.е. я не смогу сделать вот такое (3/5) в степени  (3х+6) >0,35  а если было бы вместо 0,35 0,36 то мы бы спокойно заменили 0,36=0,6^2 а 0,6=3/5 

     

    А9-4 мы возведем и левую и правую часть в квадрат но при решении такого неравенства мы должны помнить что корень из отрицательного числа не извлекается а это значит что 12-2х>=0 (>= значит больше или равно) -2х>=-12  2x<=12 x<=6 

    теперь решаем само неравенство. значит мы возвели в квадрат обе части и получили

    12-2х<=4

    -2x<=-8

    2x>=8

    x>=4

    т.е. у нас получается [4;+бесконечности) но мы помним что не может х быть больше 6 значит у нас в ответе получится [4;6]  значит ответ под номером 4 верный

     

     

    B1 смотри есть такие формулы приведения ты их либо можешь либо зазубрить либо понять я тебе попробую объяснить но если тебе тяжело понять то я их тебе скину тогда зубри их

    вообщем смотри например 3cos(Pi-a) вот теперь представь геометрическую окружность и точку пи(180 градусов) полсе чего отними альфу (т.е. какой либо острый уго но т..к. он острый не больше 90 градусов) 

     на рисунке я тебе даже направления указала в какую сторону надо двигаться при вычитании альфа и при сложении альфы

    вообщем я разбер тебе вот этот случай 3cos(Pi-a)

    красным цветом я буду обозначать решение 

    1) нашли точку пи

    2)отняли от нее угол альфа

    3)смотрим в какой четверти будет у нас точка пи-а  конечно во второй (внутри окружности я тебе подписала номера четвертей) а во второй четверти косинус имеет знак минус значит мы пишем   3cos(Pi-a)=

     

    а теперь запомни еще вот  что если у тебя в скобках пи или 2 пи или 3 пи (вообщем целое число пи) то функция не меняется (т.е. был синус и он так и останется синусом, был косинус-остался косинусом,был тангенсом-осталя тангенсом,был котангенсом-остался котангенсом и т.д. ) а если например будет пи/2 или 3пи/2 или 10пи/3 без разницы функция будет меняться (т.е. синус на косинус, а косинус на синус; тангенс на котангенс а котангенс на тангенс) т.к. у нас целое число пи то функция не меняется и теперь подписываем к нашему решению косинус и альфу т.е то что было в скобке (если бы там было 2 альфы мы бы написали косинус 2 альф и т.д.)

    коэффициент 3 переписываем

     3cos(Pi-a)= — 3cos а

     

     

     

    теперь решим 2sin(Pi/2+a)

    смотри найдем эту точку чтобы выяснить в какой четверти и с каки знаком там будет синус (зеленым цветом)

    так же получаем вторую четверть но у синуса в отличии от коинуса во второй четврти знак положительный а значит мы пишем дальше вот так

    а еще так как у нас пи деленное на 2 мы меняем функцию синус на косинус и получим

    коэффициент 2 переписываем

    2sin(Pi/2+a)=2сos a

     

    а теперь решим все выражение 

    3cosa(Pi-a)+2sin(Pi/2+a) где cosa=0,5

    3cosa(Pi-a)+2sin(Pi/2+a)=-3cosa+2cosa=-cosa=-0,5 — вот и ответ

    а т.к. косинус альфа у нас равно 0,5  то минус косинус альфа равно -0,5

     

    ________________________________________________________________________

     

    Извини,остальное я уже не смогу решить — уезжаю в магазин,но ты сам подумай,если есть какие-то вопросы то напиши. Если я не буду занята — отвечу. Кстатит ты по любому в 10 классе, а это у тебя диагностическая переодная работа?! да???)) просто у меня работа будет такая только у нас тяжелей у нас без части а у нас больше заданий частей б и ц !!!!))ахаха если я угадала с тем что это работа переводная то удачи тебе)) 

Комментарии 1

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *